BEMA 56A Graph Theory

Dr S. Srinivasan

Assistant Professor, Department of Mathematics, Periyar Arts College, Cuddalore - 1, Tamil nadu

Email: smrail@gmail.com
Cell: 7010939424

UNIT I - Graphs and subgraphs

Sections:

1.1 Graphs
1.2 Degree of a vertex
1.3 Subgraphs
1.4 Isomorphism of graphs
1.5 Independent sets and Coverings.

1.1 Graphs

Definition 1.

A graph $G=(V(G), E(G))$ consists of a non empty set,
$V(G)$ called the set of vertices of the graph,
$E(G)$ is the set of edges of the graph.

Figure: Petersen graph

Join

Definition 2.

If $e=\{u, v\} \in E(G)$ then the edge e is said to join u and v.

Figure : $e=u v$

Adjacent

Definition 3.

If $e=u v$ then the vertices u and v are adjacent.
(i.e., u and v join by an edge).

Figure: Adjacent vertices

Incident

Definition 4.

If $e=u v$ then the vertex u and the edge e are incident with each other.

$(p, q)-G r a p h$

Definition 5.

A graph p vertices and q edges is called a (p, q)-graph.

Multiple edges

Definition 6.

If two or more edges join same pair of vertices are called multiple edges.

Figure : Parallel edges

Multi graph

Definition 7.

A graph allow multiple edges then the graph is called multi graph.

Figure: Multigraph

Loop

Definition 8.

Any edge joining a vertex to itself is called a loop.

Pseudo graph

Definition 9.

A graph allow multiple edge and loops then the graph is called pseudo graph.

Figure: Pseudograph

Simple graph

Definition 10.

A graph contains no multiple edge and loops then
the graph is called simple graph.

Figure: Simple graph

Null graph

Definition 11.

A graph whose edge set is empty is called a null graph or totally disconnected graph.

Figure: Empty graph

simple graph

multigraph

pseudograph

Figure: Graphs

Complete graph

Definition 12.

In a graph G any to vertices are adjacent is called a complete graph.
The complete graph with n vertices is denoted by K_{n}.

Figure: Complete graphs

Bipartite graph

Definition 13.

A graph G is called a bipartite graph
if vertex set V can be partitioned into two disjoint subsets V_{1} and V_{2} such that every edge of G joins a vertex of V_{1} to a vertex of V_{2}.

Figure: Bipartite graph

Complete bipartite graph

Definition 14.

In a bipartite graph G contains
every edge joining the vertices of V_{1} to the vertices of V_{2}
then G is called a complete bipartite graph.

The complete bipartite graph with n vertices in V_{1} and
m vertices in V_{2} is denoted by $K_{n, m}$.

Figure: Complete bipartite graph

1.2 Degree of a vertex

Definition 15.

The degree $d_{G}(v)$ of a vertex v in G is the number of edges of G incident with v, each loop counting as two edges.

Figure: Degree at the vertex v_{1}

Figure : Compute degree at each vertex of the above graph

Isolated vertex, Pendent vertex

Definition 16.

A vertex v whose degree is zero is called isolated vertex.

Definition 17.

A vertex v whose degree is one is called end or pendent vertex.

Notation.

$\delta(G)$ denote the minimum degree of vertex in G.
$\Delta(G)$ denote the maximum degree of vertex in G.

$$
\begin{array}{ll}
\operatorname{deg}\left(v_{1}\right)=2 & \operatorname{deg}\left(v_{3}\right)=1 \\
\operatorname{deg}\left(v_{2}\right)=3 & \operatorname{deg}\left(v_{5}\right)=0 \\
\operatorname{deg}\left(v_{4}\right)=2 &
\end{array}
$$

Figure: Isolated vertex and Pendent vertex

k-regular graph

Definition 18.

A graph G is k-regular if $d_{G}(v)=k$ for all $v \in V(G)$.

Figure: 2-regular graphs

A regular graph

Definition 19.

A graph G is regular if it is k-regular for some k.

Figure: Regular graph

Remark :

1. The complete graph K_{n} is $(n-1)$-regular.
2. The complete bipartite graph $K_{n, n}$ is n-regular.
3. Here after graph means finite and simple.

Euler's Theorem

Theorem 1.1.

The sum of the degrees of the vertices of a graph is equal to twice the number of its edges.
(i.e., $\sum_{v \in V(G)} d_{G}(v)=2 q$).

Proof.

If $e=u v$ is an edge of G, e is counted once while counting the
degrees of each of u and v (even when $u=v$).
Hence, each edge contributes 2 to the sum of the degrees of the vertices.
Thus, the q edges of G contribute $2 q$ to the degree sum.

Corollary 1.1.

In any graph G, the number of vertices of odd degree is even.

Proof.

By Theorem 1, $\sum_{v \in v(G)} d_{G}(v)=2 q$.
Let
$V_{1}=\left\{v \in V(G): d_{G}(v)\right.$ is odd $\}$
$=$ the set of vertices of odd degree in G.
$V_{2}=\left\{v \in V(G): d_{G}(v)\right.$ is even $\}$
$=$ the set of vertices of even degree in G.

Consider $\sum_{v \in v(G)} d_{G}(v)=\sum_{v \in v_{1}} d_{G}(v)+\sum_{v \in v_{2}} d_{G}(v)$.
By Euler theorem $2 q=\sum_{v \in v_{1}} d_{G}(v)+\sum_{v \in v_{2}} d_{G}(v)$.
If $v \in V_{2}$, then $d_{G}(v)$ is even, $\Longrightarrow\left(\sum_{v \in V_{2}} d_{G}(v)\right)$ is even.
\Longrightarrow an even number $=\sum_{v \in v_{1}} d_{G}(v)+$ an even number.
$\Longrightarrow\left(\sum_{v \in v_{1}} d_{G}(v)\right)$ is even.
Since $v \in V_{1} \Rightarrow d_{G}(v)$ is odd $\Longrightarrow\left|V_{1}\right|$ is even.
i.e., the number of vertices of odd degree is even.

1.3 Subgraphs

Definition 20.

A graph H is a subgraph of G, written $H \subseteq G$, if
$V(H) \subseteq V(G), E(H) \subseteq E(G)$ and
each edge of H has the same end vertices in H as in G.

H

Figure: H and K are subgraphs of G

Proper subgraph, Supergraph

Definition 21.

When $H \subseteq G$ but $H \neq G$, write $H \subset G$ and call
H a proper subgraph of G.

Definition 22.

If H is a subgraph of G, then G is a supergraph of H.

Spanning subgraph

Definition 23.

A spanning subgrph of G is a subgraph H with $V(H)=V(G)$.

G

H

Figure: H - a spanning subgraph of G

Induced subgraph

Definition 24.

Suppose that V^{\prime} is a nonempty subset of V.

The subgraph of G whose vertex set is V^{\prime}.

Whose edge set is the set of those edges of G that have
both ends in V^{\prime} is called the subgraph of \mathbf{G} induced by \mathbf{V}^{\prime}
and is denoted by $G\left[V^{\prime}\right]$.
We say that $G\left[V^{\prime}\right]$ is an induced subgraph of G.

Figure: H - a vertex induced subgraph of G

The induced subgraph $G\left[V \backslash V^{\prime}\right]$ is denoted by $\mathbf{G}-\mathbf{V}^{\prime}$.
It is the subgraph obtained from G by deleting the vertices in V^{\prime} together with their incident edges.

Figure: $H=G[V-\{u, x\}]$

In particular, if $V^{\prime}=\{v\}$ we write $\mathbf{G}-\mathbf{v}$ for $\mathbf{G}-\{\mathbf{v}\}$.

Figure: $H=G-\{x\}$

Edge induced subgraph

Definition 25.

Suppose that E^{\prime} is a nonempty subset of E.

The subgraph of G whose vertex set is the set of ends of edges in E^{\prime}.
Whose edge set is E^{\prime} is called the subgraph of \mathbf{G} induced by \mathbf{E}^{\prime}
and is denoted by $G\left[E^{\prime}\right]$.
We say that $G\left[E^{\prime}\right]$ is an edge-induced subgraph of G.

The induced subgraph of G with edge set $E \backslash E^{\prime}$ is $\mathbf{G}-\mathbf{E}^{\prime}$.
It is the subgraph obtained from G by deleting the edges in E^{\prime}.

Similarly, the graph obtained from G by adding a set of edges E^{\prime} is denoted by $\mathbf{G}+\mathbf{E}^{\prime}$.

If $E^{\prime}=\{e\}$ we write $G-e$ and $G+e$ instead of
$\mathbf{G}-\{\mathbf{e}\}$ and $\mathbf{G}+\{\mathbf{e}\}$.

1.4 Graph Isomorphism

Definition 26. Identical graphs
Two graphs G and H are said to be identical, written $G=H$,
if $V(G)=V(H), E(G)=E(H)$.

Isomorphic graphs

Definition 27.

Two graphs G and H are said to be isomorphic, written $G \cong H$, if there are bijections $\theta: V(G) \rightarrow V(H)$ and $\phi: E(G) \rightarrow E(H)$ such that $e=u v$ if and only if $\phi(e)=\theta(u) \theta(v)$.

Remark :

1. A bijection is a mapping which is both one-to-one and onto.
2. The pair (θ, ϕ) of mappings is called an isomorphism between G and H.

Figure : $G \cong H$

Prove that the pair of graphs below are isomorphic.

Verify whether the pair of graphs below are isomorphic or not?

Verify whether the pair of graphs below are isomorphic or not?

Verify whether the pairs of graphs below are isomorphic or not?

G_{I}

G_{2}

G_{3}

Complement of G

Definition 28. Let G be a given graph.
The complement of G is denoted by G^{c} or \bar{G}.

Two vertices are adjacent in G^{c} if and only if they are non adjacent in G.

Self Complementary graph

Definition 29.

A graph G is said to be a self complementary graph if $G \cong \bar{G}$.

G

complement of G

1.5 Independent sets and Coverings

Definition 30.

A covering or vertex covering of a graph G is a subset K of V
such that every edge of G is incident with a vertex in K.

Figure: Whell graph W_{5}

Minimum covering

Definition 31.

A covering K is called a minimum covering if G has
no covering K^{\prime} with $\left|K^{\prime}\right|<|K|$.

Figure: Cycles C_{4} and C_{5}

Covering number

Definition 32.

The number of vertices in a minimum covering of G is called the covering number and it is denoted by β.

Figure: Petersen graph, $\beta=6$

Independent set

Definition 33.

An independent set of a graph G is a subset S of V such that no two vertices of S are adjacent in G.

[^0]
Maximum independent set

Definition 34.

An independent set S is called a maximum if G has no independent set S^{\prime} with $\left|S^{\prime}\right|>|S|$.

Figure: Independent set

Independence number

Definition 35.

The number of vertices in a maximum independent set of G is called the independence number and it is denoted by α.

Figure: Petersen graph, $\alpha=4$

Theorem 1.2.

A set $S \subseteq V$ is an independent set of G iff $V-S$ is a covering of G.

Proof.

By definition of independent set,
S is independent iff no two vertices of S are adjacent.
i.e., iff every edge of G is incident with at least one vertex of $V-S$.
i.e., iff $V-S$ is a covering of G.

Theorem 1.3.
$\alpha+\beta=p$.
Proof.

Let S be a maximum independent set of G.

Then $|S|=\alpha$.
Let K be a minimum covering of G.
Then $|K|=\beta$.

As S is independent, By theorem 1.2, $V-S$ is a covering of G.
K is a minimum covering of G, which implies $|K| \leq|V-S|$.
$\Rightarrow \beta \leq p-\alpha$.
$\Rightarrow \alpha+\beta \leq p$.
As K is covering, By theorem 1.2, $V-K$ is an independent set of G.
S is a maximum independent set of G, implies $|S| \geq|V-K|$.
$\Rightarrow \alpha \geq p-\beta$.
$\Rightarrow \alpha+\beta \geq p$.
From (1) and (2), we have
$\alpha+\beta=p$.

Edge Covering

Definition 36.

An edge covering of a graph G is a subset F of E such that every vertex of G is incident with an edge in F.

Minimum covering

Definition 37.

An edge covering F^{\prime} is called a minimum edge covering
if G has no edge covering $F^{\prime \prime}$ with $\left|F^{\prime \prime}\right|<\left|F^{\prime}\right|$.

Edge Covering number

Definition 38.

The number of edges in a minimum covering of G is called the edge covering number. It is denoted by β^{\prime}.

Figure : Petersen graph, $\beta^{\prime}=5$.

Edge Independent

Definition 39.

A set of edges is called edge independent if no two of them are adjacent.

Maximum independent set

Definition 40.

An edge independent set S is called a maximum if G has no edge independent set S^{\prime} with $\left|S^{\prime}\right|>|S|$.

Edge Independence number

Definition 41.

The number of edges in a maximum edge independent set of G is called the edge independence number. It is denoted by α^{\prime}.

Figure : Petersen graph, $\alpha^{\prime}=5$.

Note .

It is not true that the complement of an independent set of edges
is a edge covering.

Theorem 1.4. (Gallai)
$\alpha^{\prime}+\beta^{\prime}=p$.

Proof.

Let S be a maximum independent set of edges of G.

Then $|S|=\alpha^{\prime}$.
Let M be a set of edges, one incident edge for each of the $p-2 \alpha^{\prime}$
vertices of G not covered by any edge of S.

Clearly, $(S \cup M)$, is a edge covering of G.

$$
\Rightarrow|S \cup M| \geq \beta^{\prime}
$$

$$
\Rightarrow|S|+|M| \geq \beta^{\prime}
$$

$$
\Rightarrow \alpha^{\prime}+\left(p-2 \alpha^{\prime}\right) \geq \beta^{\prime}
$$

$\Rightarrow p-\alpha^{\prime} \geq \beta^{\prime}$.
$\Rightarrow p \geq \alpha^{\prime}+\beta^{\prime}$.

Now T be a minimum edge covering of G.
Then $|T|=\beta^{\prime}$.
Claim: $G[T]$ the spanning subgraph of G induced by T, is the union of stars.

Proof: Proof by contradiction.
Suppose $G[T]$ has an edge x such that both ends of x are also incident with edges of T other than x.

Then $T-x$ will become a covering of G, a CONTRADICTION to T is minimum.

Hence the claim is true.

Therefore, each edge of T is incident with at least one end vertex
of $G[T]$.
Let W be a set of vertices of $G[T]$ of exactly one end vertex for each edge of T.

Hence $|W|=|T|=\beta^{\prime}$.

Also, each vertex of $G[T]$ has exactly one vertex not in W.

Hence, $p=|W|+$ number of starts in $G[T]$.
i.e., $p=\beta^{\prime}+$ number of starts in $G[T]$.

By choosing one edge from each star of $G[T]$,
we get a set Z independent edges of G.

But α^{\prime} be the cardinality of a maximum independent set of edges and Z is a set of independent edges.

$$
\Rightarrow \alpha^{\prime} \geq|Z|
$$

$\Rightarrow \alpha^{\prime} \geq$ number of starts in $G[T]$.
By $(*), p=\beta^{\prime}+$ number of starts in $G[T]$.
$\Rightarrow p \leq \beta^{\prime}+\alpha^{\prime}$
From (1) and (2), we have $\alpha^{\prime}+\beta^{\prime}=p$.

[^0]: Cycle graph of length 5

